产业的需求决定了要完成的人工智能任务越来越复杂,轻量化人工智能必须通过加速运算效率、提高计算密度才能实现效率。这些年,人工智能的发展遇到了越来越多的瓶颈。如何将人工智能模型及其计算载体前端化、轻量化成为亟待解决的问题。最新兴起的轻量化人工智能被寄予厚望。
近年来,随着信息技术领域的摩尔定律逐步放缓,硬件的发展越来越难以满足当前人工智能模型动辄万亿级规模的存储和算力需求,数据堰塞、存储暴涨、隐私泄露、能耗高企等问题随之而来。当前,对于人工智能设备和应用的快速响应、隐私保护以及节能减排的需求越发凸显,轻量化人工智能应运而生,并被寄予厚望。
所谓轻量化人工智能,是指以一系列轻量化技术为驱动提高芯片、平台和算法的效率,在更紧密的物理空间上实现低功耗的人工智能训练和应用部署,不需要依赖与云端的交互就能实现智能化操作的人工智能。
更重要的是,轻量化人工智能将人工智能推向更主流,它大大降低了人工智能系统的部署难度和成本,把人工智能从一场高门槛的科技巨头竞赛变成更容易普惠民生的智能生态。产业的需求决定了要完成的人工智能任务越来越复杂,轻量化人工智能必须通过提高运算速度、计算密度才能实现效率。
作为人工智能的硬件载体,人工智能芯片必须达到更高的性能、更高的效率、更低的功耗和更小的体积。这样才能有足够平价高效的计算平台满足产业需求,承载复杂的人工智能任务,并且使推理和运算从云端迁移到终端。
同时,轻量化的人工智能平台要以更低的功耗来训练和运行人工智能算法,发掘硬件的能力。更重要的是,应用轻量化技术的神经网络模型要小规模、少运算量并保持良好的精度。
2020年,中国科学院自动化研究所自主研发的极低比特量化神经处理芯片(QNPU)成功流片,绕开了芯片计算领域备受关注的“内存墙”难题,在芯片成本、功耗、计算结构、边缘计算等方面实现革命性的变革。该芯片的面世,也标志着自动化研究所成为了全球为数不多的拥有‘人工智能芯片―平台―算法’全栈轻量化人工智能技术的机构之一。
未来,以人工智能驱动的小型化设备会越来越多出现在我们身边。由人工智能芯片、平台和算法组成的轻量化人工
智能终端将在越来越多的场景中应用。